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Introduction: Skin disease is one of the most common diseases and can affect people of all ages and races. However, the diagnosis of
skin diseases via observation is a highly challenging task for both doctors and patients, and would benefit from the use of an intelligent
system. Building a large benchmark with professional dermatologists is resource-intensive, and we believe that few-shot learning
(FSL) methods would be helpful in solving the problem of annotated data scarcity. In this paper, we propose CDD-Net (Context
Feature Fusion and Dual Attention Dermatology Net), a plug-in module for FSL clinical skin disease classification.

Methods: Current FSL methods used in skin disease classification are limited to nonuniversal approaches and few disease classes.
Our CDD-Net has a flexible structure, including a context feature—fusion module and dual-attention module to extract discriminating
texture feature and emphasize contributive regions and channels. The context feature—fusion module localizes discriminatory texture
details of skin lesions by integrating features from different layers, while the dual-attention module highlights discriminative regions
via channel-wise and pixel-wise depictions based on weight vectors and restrains the contributions of irrelevant areas. We also present
Derm104, a new clinical skin disease data benchmark that has significant coverage of rare diseases and reliable annotation between
primary species and subspecies for better validation of our approach.

Results: Our experiments validated the versatility of CDD-Net for different FSL methods and achieved an improvement in accuracy
of up to 9.14 percentage points compared with the vanilla network, which can be considered state of the art. The ablation study also
showed that the dual-attention module and context feature—fusion module worked efficiently in CDD-Net.
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Introduction

Skin disease is one of the most common diseases and can affect people of all ages and races.' There are many problems that skin
diseases can cause to patients, including itching and bleeding, which can seriously affect their quality of life or even cause them to
lose their lives. Skin diseases should be diagnosed early so that they can receive the correct treatment as soon as possible and
avoid further progression. Delayed diagnosis can be attributed to the limited medical knowledge of patients and disparity in
medical resources. We can solve some of these problems with the help of computer-aided diagnosis to a certain extent.

Dermoscopic images are the primary focus of early investigations using computer-aided diagnosis for skin diseases.
This is due to the fact that they focus more on lesions than clinical images with uniform illumination and less noise.
However, dermoscopic-based diagnosis of skin diseases has some restrictions, such as high costs and low convenience.
In recent years, some researchers have begun to pay more attention to clinical images.* Differences between clinical
images and other images are demonstrated in Figure 1.

In recent years, the fields of feature learning and object recognition have experienced tremendous growth in the use of
convolution neural networks (CNNs). According to numerous studies from ImageNet’s large-scale visual recognition
challenge, the most sophisticated CNN has outperformed humans on object-classification tasks.®® Due to its exceptional
performance over traditional methods, deep CNN-based learning is also frequently utilized in skin disease classification,”'”
lesion localization, and segmentation tasks,'' '* A majority of these tasks showed a high standard of accuracy, making
automatic skin disease screening achievable.
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Owing to the great amount of resources required for building a large benchmark with professional dermatologists, we

believe that few-shot learning (FSL) classification would be helpful in solving the problem of scarcity of annotated

data.'® Tt aims to accommodate novel classes unseen during training using only a few examples during testing. This is

Figure | Comparison of clinical skin images (a—c), dermoscopic images (d—f), and tissue-biopsy pathology images (g—i). The gold standard for skin disease diagnosis is based
on tissue-biopsy pathology images, but high-quality equipment and testing techniques are required. Dermoscopic images are obtained using a microscope, which can only test
lesions in block or dot shape. Clinical images are influenced by the angle of photography and the intensity of light, and are almost always obtained under different lighting

conditions and uneven focal lengths of the lesion, resulting in greater external interference.
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unlike a pretrained fine-tuning model, in which the classifier uses a previously learned representation and tunes its
parameters to maximize the accuracy of new data. The problem with pretrained fine-tuning is that the classifier is most
likely to overfit the new data when fewer examples are provided.

State of the Art

Currently, FSL methods are used frequently in early skin disease—screening application tasks such as ToMT'® and mobile
diagnosis platform,'” FSL methods proven to have satisfactory performance over long-tailed and sample-classification
tasks like skin disease classification. Several improved skin lesion—classification methods based on FSL have also been
introduced, containing multiperspective improvements on vanilla methods. Liu et al introduced an embedding-based
comparison method improved from RelationNet,'® Zhu et al proposed a novel loss-function calculation named query-
relative loss over meta-learning,'” Li et al and Prabhu et al raised a similar issue of focusing on clustering methods using

2021 and Mahajan et al proposed an enhanced convolution strategy, ie, group-

category judgment in feature maps,
equivariant convolutions (G-convolutions) to alleviate classification error brought about by data augmentation, such as
rotations and reflections.”? However, these studies were limited to nonuniversal approaches or few disease classes.

In this work, we propose a multiscale feature-fusion FSL classification approach to skin disease classification, CDD-
Net (Context Feature Fusion and Dual Attention Dermatology Net), based on the special texture characteristics of clinical
skin images. CDD-Net focuses on feature-level improvement, with the application of the developed extraction and fusion
strategy, which makes it possible to utilize almost all the current FSL methods, rather than improvement only in specific

tools, such as metric learning-based methods' "' 18,19

or meta-learning—based methods.
To test our method, we built a large skin disease dataset, Derm104, with 104 classes of skin lesions, which provides
a large benchmark for skin disease FSL classification. It merges 1781 self-collected images from a public skin disease

atlas website (www.med126.com/pf) and 2702 images from the public dataset SD-198,% for a total of 4483 images. For

a more stable verification result and to ensure adequate generalization, we ensured that there were at least 20 images per
category. Our contributions are as follows.

1. We built a clinical skin disease dataset, Derm104, with 104 classes of skin lesion, providing a reliable benchmark
for our research.

2. We propose CDD-Net as a universal feature-level plug-in module in clinical skin image FSL classification fitting
the special texture characteristics of skin lesions, which makes it an improvement on almost all the current FSL
methods, with accuracy improvement of up to 9.14 percentage points. This approach provides a solving pattern for
the scarcity of annotated data problems in clinical skin disease diagnosis.

Related Work and Materials
FSL Methods

In contrast to traditional classification methods, FSL aims to classify instances from undiscovered classes with a small
number of labeled samples in each class.'> Ravi and Larochelle used an LSTM-based meta-learner that captures both
short-term knowledge that is specific to a task and long-term knowledge that is shared across all tasks.** Using the
prototypes for each class, ProtoNet performs classification using a representation-based metric space.”” The use of FSL in
the context of meta-learning has also been investigated by Finn et al,® wherein they presented an algorithm for fast
adaptation of networks on versatile tasks and showed their effectiveness in one-shot learning tasks. Vinyals et al proposed
a network known as matching networks that learns the mapping between a small labeled support set and an unlabeled
example.”’ The training process is based on the idea that testing and training settings should be identical. Finn et al
continued to investigate meta-learning mixed with imitation learning from a visual demonstration challenge of one-shot
learning for a robot.”® Meta-learning and transfer learning were integrated by Sun et al to develop a hard-task meta-batch
scheme, an effective learning curriculum that increases convergence and accuracy.”’

Typically, each few-shot classification task 7., corresponds to every training episode in one epoch, and would be
randomly selected from a sample dataset, and samples in task 7;, would be divided into support set T, and a query set 7.
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If the support set 7; contains N classes with K samples in each class, the few-shot classification task is called N-way
K-shot. The query set T, contains the samples from the same classes with the support set 7;. Formally, a few-shot task
can be defined as 7=(T,, T,), where Ts= {(x,y? }i'y © and Tq= {(x, y{ }2,. Given the support set T, our goal is to
classify and assign the samples in the query set T, correctly to one of the N classes. This kind of training mechanism
based on task training is called metaparadigm or episodic paradigm. Figure 2 shows how episodic training works in skin
disease classification.

There are three types of FSL classification:, pretrained fine-tuning—based methods, meta-learning—based methods, and
metric learning—based methods.?> ** In pretrained fine-tuning, a generic training task is used rather than episodic training
in the training stage. The entire base class N°*° is trained to train a classifier:

Nha.ce
(0, w) = argmin 21 L(Cy(fo(x1)),») (1
i-

where I'(6, w) is a parameter of the embedding backbone and the classifier. In the testing stage, several episodic
training tasks T were built and sampled from the domain of the novel class N*°¥*". The support set 7, will fine-tune the
trained I'(0, w), and the query set 7, is tested in the classifier.

In meta-learning—based methods, episodic training is employed in both the training stage and testing stage. A meta-
learner is added and the network training is processed in a two-step optimization between the base learner and meta-
learner. The first step is called base learning or inner loop, which optimizes the base learner with the support set 7, as in
MAML,*® and the gradient is updated:

Ly =Tun1— aVFm—ILS(FFm—l) (2)

where F1 = fp o C,, @ and m are the learning rate and the iteration number in the inner loop, respectively. The second
step is meta-fine-tuning or outer loop, which optimizes the meta-learner with query set 7, and a similar gradient is
updated:

I'=T - pVrLo(Fr,) 3)

The parameter of the model is truly updated over the previous parameter I” rather than I',, by using the query set 7. In
this way, the meta-learner is expected to learn a type of across-task meta-knowledge that can be used for fast adaptation
to novel tasks.

In metric learning—based methods, episodic training is employed in the training stage, but not in the testing stage. Instead,
the testing stage will directly compare the similarities between the samples in the support set 7 and the query set T, as part of
a single feed-forward pass mechanism. Every sample is encoded into the latent representation space, as in ProtoNet,”> and

samples are encoded as prototype ¢, ¢, = %Z/K:l fo(x; ) where K denotes K-shot in the support set. The prototype of the

query sample X computes the distance with C, and the predicted posterior probability distributions are:

Sample Dataset

Episode Tasks

Support Set 7

‘hm '—»@a L0,.5,)
=@

Gd-4 4

Figure 2 Episodic training mechanism in skin disease classification. A series of episode tasks are built from the sample dataset and divided into support set (Ts) and a query
set (Tq). Convolutional neural network-based embedding backbone and classifier noted as f, and C,, respectively. Also, the classifier can be integrated with the embedding
backbone into a unified network and trained in an end-to-end manner.

Embedding Classifier Loss

Query Set 7,

1010 "= Clinical, Cosmetic and Investigational Dermatology 2024:17
Dove!


https://www.dovepress.com
https://www.dovepress.com

Dove Chen et al

oy e(=Dlf(x0).C))
p(y =i0) > exp(—D(fa(x0), Ci))

“4)

where D (.) denotes the Euclidean distance between the prototypes. In the training stage, the standard cross-entropy loss
was employed to train the entire model. In addition, during the testing stage, the nearest-neighbor classifier (1-NN) can
be conveniently used for prediction.

Dataset

In order to support the application of computer-aided diagnosis in dermatology, several public datasets of skin diseases were
created as a benchmark for measuring the effectiveness of automatic diagnosis. The Dermofit dataset is provided by
researchers at the University of Edinburgh in Scotland.>> This dataset is of high quality and is widely used by researchers,
but it is not freely available. Dermofit includes 10 different types of skin diseases, but there are only roughly 1300 photos in
total. The International Skin Imaging Collaborative has collected a large dataset of publicly accessible dermoscopic images,®
which was released in 2016 for a publicly available benchmark competition for dermoscopic image analysis. MoleMap is
a skin dataset consisting of three cancer categories and 22 benign categories.>’ The cancer categories are melanoma, basal cell
carcinoma, and squamous cell carcinoma. Each lesion image consists of a dermoscopic image and a clinical image that was
captured 10 cm from the lesion. The Asan dataset was obtained from the Dermatology Department of Asan Hospital.*® It
contains 12 dermatological disease categories within Asian subjects. A collection comprising 1276 of these photos is available
for downloading for research purposes. SD-198 is a publicly available dataset of clinical skin images collected by Sun et al. It
comprises 6584 images range in size, color, shape, and structure across 198 categories.”’

All of the abovementioned datasets have their own disadvantages in clinical skin disease classification. The International
Skin Imaging Collaborative dataset mainly contains dermoscopic images, which are costlier and more difficult to obtain from
clinical images.>® The Dermofit, MoleMap, and Asan datasets contain fewer categories (<25) and do not cover enough rare
categories.>>">* Compared with other datasets, SD-198 is a more proper dataset,” but more than half of its collected
categories contain fewer than 20 images, which may cause overfitting during the training of a deep-learning network. Another
problem is that some major species and subspecies are not classified accurately, such as general psoriasis, pustular psoriasis,
and nail psoriasis, which may cause category confusion.

We present a new clinical skin disease dataset as a benchmark for clinical skin disease classification, Derm104, which
covers sufficient rare diseases and contains easily obtainable clinical images. Derm104 has high diversity, multiple
categories, wide coverage, and reliable samples and benchmark experiments can effectively evaluate the reliability of
various FSL methods in clinical skin disease classification.

1. Annotation and Scale: Derm104 contains 4483 clinical images covering 104 types of skin disease and is merged from
two parts. The first part comprised 1781 images, all of which were collected by professional dermatologists from the
public dermatology dataset on www.med.126.com/pf. The second part contains 2702 images from the public dataset

SD-198. Both parts of the dataset are public and freely available to researchers, and the patients involved in the
database have given approval for their images to be used. To prevent ambiguity and ensure the accuracy of
classification between subspecies, we chose some of the images from SD-198, and every category ground truth
was verified by professional dermatologists. Images per class vary from 20 to 141 to ensure variance stability.

2. Diversity: All images are from a real scene with variance in color, exposure, illumination, and level of detail
collected in a variety of environments. Also, skin lesion images include: eczema, psoriasis, acne, lichens, prurigo,
alopecia areata, urticaria, scabies, nervus, erythema, pityriasis, vercurra, bacterial skin diseases, and melanoma
skin cancer, covered more than 90% of the incidence of all skin diseases.

3. Fine Granularity: Our dataset also focuses on fine-grained disease classes, such as many subspecies that have tiny
interclass variance and are difficult to classify. For example, erythema, pityriasis, and lichen diseases can be
classified into many subcategories that are difficult to distinguish. Few subspecies are included in existing

35-38

datasets, so Derm104 focuses more on this. Some of our fine-grained images are shown in Figure 3.
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Figure 3 Fine-grained classified images. Collected subspecies in erythema (a), lichen (b), and pityriasis (c) as examples. Images in such subspecies have tiny interclass
variance and significant intraclass variance, causing challenges in correctly diagnosing similar dermatological diseases.

Methods
The classification of clinical skin lesions emphasizes lesion location and examination of textural features compared with
natural scene images. For example, locations such as the cheek, nose, or eye influence the determination of facial skin diseases,
and texture features such as line shape and large flake area cannot be easily focused on, rather than dot or block shapes.
However, normal classification methods may not work efficiently. In order to extract specific deep features in skin lesions, we
propose CDD-Net as an enhanced solution for clinical skin disease classification. Current FSL methods for skin disease
classification are limited to individual approaches,'® % but CDD-Net has highly versatile performance that can be used as
a plug-in module in both metric learning—based, pretrained fine-tuning—based and meta-learning—based FSL methods.
CDD-Net is composed of a context feature—fusion module and a dual-attention module for different stages of feature
processing. The context feature—fusion module localizes the discriminatory texture details of skin lesions by integrating
features from different layers. The dual-attention module highlights discriminative regions from channel-wise and pixel-wise
representations based on weight vectors and restrains the contributions of irrelevant areas. In the following section, we
describe the entire framework of the proposed CDD-Net. The overall flowchart is given in Figure 4.
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Figure 4 Overview of our approach. CDD-Net consists of two submodules: context-feature fusion and dual attention. An episode batch comprising support set T, and
query set T, will be processed by the feature extractor hy,,, which is combined by the CNN-based network g, and proposed context feature—fusion module f,. g, can be
supported with fusion module f,, and utilizes hidden texture information. After that, the dual-attention module will work on a feature map of support set F and query set F.
Feature maps will be categorized into G° and G, with channel-wise and pixel-wise discriminant information. During episode training, the support set needs to learn
with the labels and propose backward optimization into the context feature —fusion module and dual -attention module. The optimized modules will help
the query set to infer new classes in episode testing.

Context Feature—Fusion Module

In recent years, the idea of feature fusion has been applied in many visual tasks. Specifically, Long et al combined deep
semantic features with shallow appearance features to produce accurate and detailed segmentations.>® Manzoor et al
effectively fused deep features extracted from different convolution layers for high-resolution dermoscopic skin image
classification.*” In this paper, we introduce a context feature—fusion mechanism to exploit the strong complementary and
correlated information among different hierarchical layers for clinical skin image classification.

Considering that different layers may have feature maps of different sizes, we use the bottleneck module to ensure
that they have the same spectral dimensionality before feature fusion. Such an operation is applicable to convolution
layer-based neural networks, and thus we can utilize our module within CNN networks such as ResNet and others. For
instance, in ResNet12, we assume that Fy, F,, F3, and F, refer to the outputs from low to higher-level layers that have 64,
160, 320, and 640 feature maps, respectively. Then, we can use 640 kernels with of size 1x1 to convolute them. With
such a convolution operation, the number of feature maps from F; to F4 becomes 640. Finally, feature fusion can be

performed easily using element-wise summation. The entire process can be represented as:

F=L%B(F) 5)

ni=i

where F; represents the fused features, F; represents features from different convolution layers, and B; is a bottleneck
module corresponding to F;. Conversely, F; can also be represented as the result of sample image x; processed through

our feature extractor 4, ,, where kg, is combined by convolution network g, and feature-fusion module f,:

hoy =800 fu

6
F.= h‘g-,ﬂ(xi) (©)

Finally, we use pooling as the global averaging function. The entire context feature—fusion module is illustrated in
Figure 5.

Dual-Attention Module
Introducing an attention mechanism to complete the adaptive weight adjustment is helpful in highlighting the represen-
tative discriminative regions and restraining the contributions of irrelevant backgrounds. Ma et al used a squeeze-and-

excitation module to enhance channel weight on new feature maps via pooling and full connection layers, elevating
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Figure 5 Schematic illustration of context feature—fusion module. A traditional convolutional neural network would pass original images through a deep network consisting
of several convolutional blocks. Different hierarchy blocks would output feature maps of various dimensions incorporating different receptive fields, resolutions, and detailed
information. We propose average-pooling our processed feature maps. For convenience, the batch normalization, activation layers, and dimension-matching operations are
not given.

segmentation efficiency for brain tumor imags.*' Space weight focuses on the location of the area of interest. Wei et al
proposed a spatial pyramid pooling module for lesion segmentation of dermoscopic images.**

We propose a dual-attention mechanism to enhance the ability to exploit features of interest based on sensitivity
scores. For each episode of the support set and query set, we define the channel-wise and pixel-wise sensitivity score to
quantify the representativeness. Prior to explaining scores, we first define feature maps F of the support and query
instance as follows:

Fij = hou (xls‘f) )
F9 = hy, (x7)

where x; ; 1s the j-th instance of the i-th class in the support set, X, is the query instance, and /g, is a feature extractor
supported by the proposed context-feature fusion in (Equation 6). Specifically, we utilize a prototype as the representative
of each class in the support set.>> The prototype is defined as:

1 k

FP=-Y F5. 8

where k is the instance size for each support class (ie, k-shot). Based on this, mf . € R and nf’ . € R mean the c-th

c RCXHXW

channel and x-th pixel of the prototype feature map F?’ , respectively, and we compute the mean features in

channel and spatial dimensions to represent the standard condition in each class:
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1 C
W= 3o
Cz:l ’
1 H><Wnp (9)
N]) = .
HxW Zg i

Furthermore, we obtain the channel-wise and pixel-wise sensitivity scores for each channel and pixel. Note that we
compute scores in the feature maps of support images rather than prototypes, where F7; € RO indicates the feature
map on the j-th instance of the i-th class in the support set. Similarly to what we have calculated on the aforementioned

prototype feature, m}, € R7" and n?, € R refer to the c-th channel and x-th pixel of F?},, respectively:

ij,c ijx
1
wjame — | 3y = M|
Ji¢ ij,c
HxW (10)
Wpi_xel — 1 s Np||2

ijx E || nzj,x

Intuitively, sensitive scores represent the discriminative information between the mean standard and region of interest,
but cannot finally determine how much attention should be paid to this. In order to choose efficient weights and improve
the generalization, we introduce the fully connected block (FCB) to realign the weight vectors. The architecture of the
FCB is presented in Table 1.

Notes: S, input weight that would be realigned. When FCB is required for adaption of channel-wise depiction, S is
equal to channel size C, while FCB requires pixel-wise depiction and S is equal to layer size HxW.

The sensitivity scores in a single-feature map can be combined into weight vectors w;?j?a““e’ € R and wf? ;-xel e RV,
and they would be transformed through a fully connected block corresponding to the discriminative information from the

perspectives of channel and pixel, respectively, and processed thus:

ij ij

ixel ; ixel .
Ve = Hpe (M{’JM ) + noise

vchannel _ Hchannel (Wchannel) & noise

(11)

where H represents FCBs that adapt to the different weight vectors. In the episode-training stage, we add random noise
between —0.2 and 0.2 to the weight vector v;; to prevent overfitting. Upon obtaining channel- and pixel-discrimination
weight vectors, we scale them with the original feature map correspondingly. Finally, we construct a linear combination
with a balancing hyperparameter a:

s channel s
Gi,’*“("zj QFiJ

)+ - (O Fy).ae 1] (12)

In a similar vein, we can also obtain the processed feature map G4 € RE**" from the query image. The difference is
that we use its own feature map rather than the prototype in the support set. The entire dual-attention module is shown in

Figure 6.
Table | Architecture of the fully con-
nected block.Fully Connnection Block
Layer Output size
Input S
Fully connnected layer | 2S
Batch normalization 25
RelLU 28
Fully connnected layer | S
1+Tanh S
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Figure 6 Schematic illustration of dual-attention module. The different colors in the cubes indicate different sensitive scores in channels and pixels. In addition,
calculations of sensitive scores for individual feature maps in the support set and query set, channel-wise and pixel-wise, are independent of one another. The final
combination from the perspectives proposed is dependent on hyperparameter o € [0,1] (Equation 12), which is omitted in the illustration.

Results

In this section, we evaluate CDD-Net on the proposed Derm104 benchmark. Derm104 consists of 4483 clinical images
covering 104 types of skin diseases. Derm104 has detailed and reliable labels, enough categories, high diversity, and fine
granularity, and thus we propose it as our benchmark for clinical skin disease FSL classification. In sum, 62 categories
were set as the training set, with 21 categories as the validation set and another 21 categories as the testing set.

We adopted common protocols from recent FSL research on skin disease.'®>* The entire training procedure was
completed on the GPU of an Nvidia GeForce 1080 Ti. The input image size was set to 84x84x3, and lightweight backbones
of Conv64F and ResNet12 were used. ResNet12 produced a feature map with an output size of 640x5x5, whereas Conv64F
provided a size of 64x5%5. Prior to inputting the photos into the convolution network, common data-augmentation methods,
such as center crop and horizontal flip, were employed. Note that skin lesion classification is color-sensitive, so color jitter is
not used.*’ Parameter a (Equation 12) was fixed at 0.5.

Following common FSL methods,'>**%’

we set five-way one-shot and five-way five-shot for the episode-training
paradigm and 10 query images per new class for result evaluation. Episodes of training, validation, and testing were set
to 100 per epoch, and the entire learning procedure consisted of 100 epochs. We set a learning rate of 17 for the Adam
optimizer. As for some approaches that require another learning rate in their inner circle, we set rates of 1> for ANIL and
172 for baseline++ and MAML. In the fully convoluted block of the dual-attention module, we set a rate of 1-*. All these
learning rates were step-scheduled to 0.1 after 70 epochs.

To verify the high adaptability of CDD-Net, we applied it to various FSL methods from different approaches: the
pretrained fine-tuning—based methods baseline++ and RFS-Distill, meta-learning—based methods MAML, ANIL, metric
learning—based methods ProtoNet, DN4, EPNet, and Neg-Cosine.”> 27> *The classification accuracy was within the
95% confidence interval. Tables 2 and 3 show the performance of our proposed CDD-Net on five-way one-shot and five-

way five-shot clinical skin disease classification, respectively.

As shown in Tables 2 and 3, we clearly validated the impressive performance, generalization ability, and robustness
of the proposed CDD-Net. It is versatile for pretrained fine-tuning—based, meta-learning—based, and metric learning—
based FSL methods, with accuracy improvement of up to 9.14 percentage points. Since CDD-Net has better performance
on metric learning—based approaches, we conducted an ablation study on ProtoNet, DN4, EPNet, and Neg-Cosine with
the modified CDD-Net and report the efficiency of its submodules.

We additionally explored the effects of the dual-attention module in CDD-Net. In Table 4, the first row shows the
results without any modules and the third row shows the accuracy after adding dual attention. We found that perceiving
the relative location of skin lesion and screening task-related regions is as important as emphasizing the channels that
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Table 2 Performance of CDD-Net on five-way one-shot classification with comparison
of various methods

Method Embedding Type One-shot With CDD-Net
Baseline++3° Convé4F Pretrained fine-tuning | 51.19 52.60
RFS-Distill®! Conv64F Pretrained fine-tuning 52.36 58.40
MAML?¢ Convé4F Meta 46.32 47.59
ANILY Convé64F Meta 49.63 51.98
ProtoNet” Convé4F Metric 42.53 49.08
DN4* Convé4F Metric 54.30% 59.46*
EPNet® Convé4F Metric 53.68 58.79
Neg-Cosine34 Conv64F Metric 53.02 56.62
Baseline++ ResNet|2 Pretrained fine-tuning 53.45 51.71
RFS-Distill ResNet|2 Pretrained fine-tuning 53.53* 57.52
ANIL ResNet|2 Meta 47.35 51.31
ProtoNet ResNet|2 Metric 52.06 59.39*
DN4 ResNet|2 Metric 50.09 56.94
EPNet ResNetl|2 Metric 52.36 59.63
Neg-Cosine ResNet|2 Metric 52.48 54.67

Notes: *Methods with outstanding performance. In vanilla approaches, DN4 performs best in Convé4 embedding
and RFS-Distill performs best in ResNetl2 embedding. In optimized CDD approaches, DN4 performs best in
Convé4 embedding and ProtoNet performs best in ResNetl|2 embedding.

Table 3 Performance of CDD-Net on five-way five-shot classification with comparison
of various methods

Method Embedding Type Five-shot With CDD-Net
Baseline++3° Convé4F Pretrained fine-tuning 63.08 66.75
RFS-Distill®! Convé4F Pretrained fine-tuning 68.29* 73.01
MAML2¢ Convé4F Meta 55.50 57.74
ANILY Convé4F Meta 53.61 54.54
ProtoNet® Convé4F Metric 60.75 68.05
DN4%2 Convé4F Metric 68.10 73.78*
EPNet™ Convé4F Metric 66.32 71.73
Neg-Cosine>* Convé4F Metric 65.53 70.08
Baseline++ ResNet|2 Pretrained fine-tuning 64.60 67.39
RFS-Distill ResNet|2 Pretrained fine-tuning 69.04 73.71
ANIL ResNet|2 Meta 49.02 5291
ProtoNet ResNet|2 Metric 64.14 73.28
DN4 ResNet |2 Metric 73.30% 78.58*
EPNet ResNet|2 Metric 71.38 76.37
Neg-Cosine ResNet|2 Metric 70.53 74.64

Notes: *Methods with outstanding performance. In vanilla approaches, RFS-Distill performs best in Convé4
embedding and DN4 performs best in ResNet|2 embedding. In optimized CDD approaches, DN4 both performs
best in Convé4 embedding and ResNetl|2 embedding.

extract key features. A single attention model is not sufficiently effective, and the second row in Table 4 shows the
influence of using only a channel-wise sensitivity score in the classification.

Furthermore, we studied the fusion strategy in the context feature—fusion module. The first row in Table 5 shows the
results without any feature-fusion operations, as well as the third row in Table 4. The results of concatenative and
additive fusion are shown in the second and third rows, respectively. We suppose that the concatenation of different
layers causes the channel dimension to overinflate (up to 2560 in ResNet12), which may cause overfitting and dimension
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Table 4 Performance of different attention-selection strategies in dual-attention module

Method Embedding Type Ablation strategy One-shot Five-shot
ProtoNet* ResNet!2 Metric | Original 52.06 64.14
DN4* 50.09 73.30%
EPNet** 52.36 71.38
Neg-Cosine** 52.48% 70.53
ProtoNet ResNet|2 Metric Channel-wise attention 53.63 65.64
DN4 51.12 74.31*
EPNet 54.05*% 72.39
Neg-Cosine 52.96 71.48
ProtoNet ResNet|2 Metric Dual attention 55.36 69.46
DN4 54.62 75.37*
EPNet 55.83* 73.44
Neg-Cosine 53.80 7251

Notes: *Methods with outstanding performance. In original approaches, Neg-Cosine performs best in one-shot and
DN4 performs best in five-shot. In channel-wise attention approaches, EPNet performs best in one-shot and DN4
performs best in five-shot. In dual-attention approaches, EPNet performs best in one-shot and DN4 performs best in
five-shot.

Table 5 Performance of different fusion strategies in context feature—fusion module

Method Embedding | Type Ablation strategy One-shot Five-shot
ProtoNet” ResNet!2 Metric | W/O feature fusion 55.36 69.46
DN4* 54.62 75.37%
EPNet™ 55.83* 73.44
Neg-Cosine** 53.80 7251
ProtoNet ResNetl|2 Metric Concatenative fusion 56.29 69.88
DN4 54.13 76.35%
EPNet 56.42* 74.40
Neg-Cosine 53.45 73.38
ProtoNet ResNet|2 Metric Additive fusion 59.39 73.28
DN4 56.94 78.58*
EPNet 59.63* 76.37
Neg-Cosine 54.67 74.64

Notes: *Methods with outstanding performance. In W/O feature-fusion approaches, EPNet performs best in one-
shot and DN4 performs best in five-shot. In concatenative fusion approaches, EPNet performs best in one-shot and
DN4 performs best in five-shot. In additive fusion approaches, EPNet performs best in one-shot and DN4 performs
best in five-shot.

disaster. The bottleneck convolution in the last layer would lose critical gradient information. Instead, additive fusion
using average pooling is an easy and reliable approach.

In order to obtain a better measure of the detailed improvement of CDD-Net, for each class of clinical skin disease
classification, we add a comparison experiment between DN4 with CDD-Net and several vanilla networks relying on
ResNet12 embedding. We demonstrate the result of final epoch running on the testing set comprising 21 categories. This
epoch contains 100 episodes of five-way five-shot classification, ie, 50 query images in five ways per episode, for a total
of 5000 queries randomly selected from the testing set. We have chosen several methods that perform better than the
aforementioned results, including the metric learning method DN4, EPNet, and the pretrained fine-tuning—based method
RFS-Distll for further demonstration. The comparison of confusion matrices for query images between vanilla DN4 and
CDD-Net is illustrated in Figures 7 and 8.

To evaluate the performance of our proposed method, several evaluation metrics are employed: accuracy

TP+TN fad P P Precisionx Recall : :
(7prvsrprEy)» Precision (755 7p), recall (75 my), and Fy score (2 x precier=pecd)). These evaluation metrics are defined
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Confusion Matrix with Vanilla DN4
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Figure 7 Confusion matrix with vanilla DN4.

based on confusion matrix in which TP, TN, FP, and FN refer to true positive (both real and predicted classes are true),
true negative (both real and predicted classes are false), false positive (the actual class of the data is false, while the
predicted one is true), and false negative (the actual class of the data is true, while the predicted one is false),
respectively. Accuracy is the number of correct predictions over the total number of predictions, also called the
classification rate. The number of predicted positive classes that belong to the actual positive class is calculated by
recision, while recall determines the true-positive rate. F; score measures the testing result according to precision and
recall. The comparison of CDD-Net with vanilla DN4, EPNet, and RFS-Distill is illustrated in Figures 9—11.

The comparison of complex matrix and the precision, recall, and F, scores focuses on the detailed performance of
different classification approaches on different disease categories. The preceding experiment shows that our proposed
CDD-Net performs best in most of the testing categories, especially in Cl (cellulitis) and Hn (halo nevus), with a lead
nearing 10 percentage points over DN4, but it does not show enough advantage in Dp (dilated pore of Winer), Ns (nevus
sebaceous of Jadassohn), or Oc (Onychomycosis).
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Confusion Matrix with CDD-Net
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Figure 8 Confusion matrix with CDD-Net.

Top-1 accuracy is the accuracy of the top-ranked category that matches the actual results, while Top-5 accuracy is the
accuracy of the top five categories containing actual results. Macro-averaging and micro-averaging methods are also
widely used in judging multiclassification tasks. Macro-averaging counts the indicator values for each cla}gs and then

averages them arithmetically across all classes: MacroPrecision =+ Y, Precision(i), MacroRecall = <; ¥, Recall(i),
i=1 i=1

N
MacroF1 :]%JEF 1(i). Micro-averaging calculates the corresponding metrics based on a global confusion matrix:

. The comparison of different methods on several

N .
MicroPrecision = MicroRecall = MicroF1 = Accuracy = Y, %
i=1

evaluation metrics is demonstrated in Table 6.
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Figure 9 Comparison of precision in CDD-Net, vanilla DN4, EPNet, and RFS-Distill.
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Figure 10 Comparison of recall in CDD-Net, vanilla DN4, EPNet, and RFS-Distill.

Discussion
Compared with traditional classification methods, FSL classification performs better in accommodating unseen novel
classes'® and has demonstrated great suitability and superiority in the field of clinical dermatology diagnostics,'®'” since

skin disease—classification tasks have have large variety and few samples. The classification accuracy was within the 95%
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Figure |1 Comparison of Fl-Score in CDD-Net, vanilla DN4, EPNet, and RFS-Distill.

confidence interval, and shows our CDD-Net is a versatile and robust development for clinical skin disease FSL
classification. Despite FSL approaches using different training paradigms, such as pretrained fine-tuning—based, meta-
learning—based, and metric learning—based methods, CDD-Net performs more efficiently and is stable. Each submodule
in the multifusion strategy has also been shown to be efficient, proving that our improved model in this work is
feasible and correct.

Most approaches perform better with more complex backbones, except for meta-learning methods, which are unstable in
sensitive networks. Based on the results in Tables 2 and 3, CDD-Net shows better performance on metric learning—based
methods than others, especially for the five-way five-shot ResNet12-embedded network: a 4.87 percentage-point improve-
ment versus the pretrained fine-tuning—based method RFS-Distill. We suppose that the reason is that metric learning—based
methods have points on the comparison of feature maps between the support set and query set, and our optimization of feature
maps fits better to this. However, pretrained fine-tuning—based and meta-learning—based approaches have more dependence on
the optimization of the training mechanism. Pretrained fine-tuning—based methods rely more on prior knowledge in the base
classes, whereas meta-learning—based methods rely more on justified meta-learner iterations.

It is worth noting that CDD-Net’s performance was unsatisfactory when compared to some approaches, including
baseline++. We suppose that this is due to our sensitivity scores calculated in the dual-attention module being based on
Euclidean distance, whereas baseline++ uses the cosine distance instead of the linear layer as its part of the classifier.
Cosine distance focuses more on relative direction, but is not sensitive to absolute distance, and thus the classifier cannot

Table 6 Comparison of different methods on several different evaluation metrics

Top-1 accuracy (%) | Top-5 accuracy (%) | Macro-precision (%) | Macro-recall (%) | Macro-Fl score (%)

RFS-Distill 69.04 74.73 69.30 69.12 69.14
EPNet 71.38 77.05 71.49 71.51 71.44
DN4 73.30 79.52 73.57 73.58 73.52
CDD-Net 78.58* 84.86* 78.62*% 78.68* 78.57*

Notes: *Methods with outstanding performance. Our optimized CDD-Net method performs best in all of the evaluation metrics.
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Figure 12 Grad-CAM visualization results: (a) lesion images of benign keratosis, tinea corporis, and junction nevus; (b—e) ablation on ProtoNet in five-way five-shot mode;
(b) without any modules in CDD-Net; (c) channel-wise attention; (d) dual attention; (e and f) concatenative fusion and additive fusion, respectively, based on dual attention.

take sufficient advantage of our provided template. The result for Neg-Cosine also shows less accuracy improvement
than that over other methods. CDD-Net performance was more robust in five-shot implementations, indicating its
reliability with more samples to learn and feedback than standard methods. CDD-Net showed improvement in
versatility of 0.93 to 9.14 percentage points over vanilla approaches, and the best results were for metric learning—
based methods.

We chose some skin lesion images from our dataset for Grad-CAM visualization (Figure 12).** Three types of
representative result image were randomly selected: benign keratosis, tinea corporis, and junction nevus. To show the
tendency of the judgment in the neural network, Grad-CAM results for the last layer in the network are demonstrated.
Since the ablation results on ProtoNet in five-way five-shot mode showed better improvement, we choose these Grad-
CAM results for a more intuitive demonstration. We found that the network’s “attention” to the actual lesion becomes
more accurate with the improvement in the various modules of the CDD-NET. Before the dual-attention module was
applied,the tendency of the network to locate a lesion was not sufficiently obvious, and there will be cases in which the
zone of interest is confusing and mistaken.

Due to the difficulty of obtaining a larger number (around 40 or 50 images per category compared with 600
samples per category in the natural landscape and object image dataset ImageNet) of images for clinically rare
skin diseases, we can only ensure a minimum of 20 images per category in Derm104, so this might be a limitation
whereby trained neural network generalization is not good enough for certain disease categories. We hope that
those in the field of dermatology are able to collect and collate more images of skin diseases of clearer quality, especially
in rare disease categories, with the development of automated health care.

Conclusion

In this paper, we introduce CDD-Net, a versatile plug-in module for clinical skin disease FSL classification, which
performs well in different FSL approaches, including pretrained fine-tuning—based, meta-learning—based, and metric
learning—based methods. CDD-Net presents a context feature—fusion module and dual-attention module to extract
discriminating texture features and emphasize contributive region and channels. We also present Derm104, a new clinical
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skin disease dataset with significant coverage for rare diseases and a reliable annotation between primary species and
subspecies, as our benchmark. CDD-Net performed better on metric learning—based methods and has an accuracy
improvement of up to 9.14 percentage points. Our ablation study validated its flexible structure and the importance of
each component. As a future direction, we will investigate how to locate and extract skin lesion features of different sizes
and shapes on complex and various backgrounds and summarize a better extraction logic, specifically for clinical skin
backgrounds.

Data Sharing
The experimental dataset combines data from two sources. The first part was obtained from the public dermatology atlas
website www.med126.com/pf. The second part is from the available dataset SD-198, collected by Sun et al.?*

Ethics and Consent
Experimental data were selected from SD-198 and www.med126.com/pf. These two datasets are public and freely

available for researchers, They were assembled in accordance with the 1964 Declaration of Helsinki and later amend-
ments or comparable ethical standards. The patients whose records are in the database have given approval for their use.
Users can download relevant data free for research and publish relevant articles. Our study is based on open-source
retrospective data that had already been collected by other researchers. No new samples were collected from any patients,
so there are no ethical issues or conflicts of interest.

SD-198 is a public skin disease dataset provided by Sun et al** that contains 6783 images of various skin lesions. This
dataset has already led to improvements in dermatology research and is publicly available for anyone in the research
community to use. The website www.med126.com/pf is a medical forum for students and researchers for study and

discussion. Clinical skin disease images in many classes are demonstrated for study or research and are also freely
available to download. Our research is free from ethical issues, based on the “Approaches to ethical review of life
sciences and medical research” in China, as shown in the following paragraph.

According to items 1 and 2 of Article 32 of the Measures for Ethical Review of Life Science and Medical Research
Involving Human Subjects, which was reviewed by the National Science and Technology Ethics Committee, approved by
the State Council of China, and jointly promulgated by the National Health Commission, Ministry of Education, Ministry
of Science and Technology and the State Administration of Traditional Chinese Medicine on February 18, 2023,
stipulates the following: 1. The research is conducted using legally obtained public data or data generated through
observation and does not interfere with public behavior. 2. Use of anonymized data for research. For more information on
China’s guidelines on research ethics and governance, please see https://www.gov.cn/zhengcee/zhengceku/2023-02/28/
content 5743658.htm.
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